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Abstract
Mathematical modeling and computer simulations are nowadays widely used tools to predict the behavior
of problems in engineering and in the natural and social sciences. All such predictions are obtained by for-
mulating mathematical models and then using computational methods to solve the corresponding problems.
We use a probability theory approach for uncertainty quantification (UQ) since it is particularly well suited
for SPDE models, and focus on the broad research areas of algorithmic development and numerical analysis
for the discretization of systems of linear or nonlinear SPDEs, building upon and significantly extending our
previous successful work.
We conduct comprehensive theoretical and computational comparison of the efficiency, accuracy, and range
of applicability of non-intrusive methods, such as stochastic collocation methods, and intrusive techniques,
such as stochastic Galerkin methods, for solving SPDEs and for UQ applications.
We extend the algorithmic and analysis advances wrought by these efforts to the even more challenging
settings of optimal control and parameter identification problems for SPDEs. The parameter identification
problem is especially important in the SPDE setting since it provides a very useful mechanism for deter-
mining statistical information about the input parameters from, e.g., measurements of output quantities.
This effort builds on our previous work on adjoint and sensitivity-based methods for deterministic optimal
control and parameter identification problems to develop similar methods for tracking statistical quantities of
interest from the computational solutions of linear and nonlinear SPDEs driven by high-dimensional random
inputs.

Status/Progress

1. A generalized methodology for the solution of stochastic identification problems constrained
by partial differential equations with random input data [5]
We propose and analyze a scalable, parallel mechanism for stochastic identification/control for problems
constrained by partial differential equations with random input data. Several identification objectives are
discussed that either minimize the expectation of a tracking cost functional or minimize the difference of
desired statistical quantities in the appropriate Lp norm, and the distributed parameters/control can both
deterministic or stochastic. Given an objective we prove the existence of an optimal solution, establish
the validity of the Lagrange multiplier rule and obtain a stochastic optimality system of equations. The
modeling process may describe the solution in terms of high dimensional spaces, particularly in the case
when the input data (coefficients, forcing terms, boundary conditions, geometry, etc) are affected by a
large amount of uncertainty. For higher accuracy, the computer simulation must increase the number
of random variables (dimensions), and expend more effort approximating the quantity of interest in
each individual dimension. Hence, we introduce a novel stochastic parameter identification algorithm
that integrates an adjoint-based deterministic algorithm with the sparse grid stochastic collocation FEM



approach. This allows for decoupled, moderately high dimensional, parameterized computations of the
stochastic optimality system, where at each collocation point, deterministic analysis and techniques can
be utilized. The advantage of our approach is that it allows for the optimal identification of statistical
moments (mean value, variance, covariance, etc.) or even the whole probability distribution of the input
random fields, given the probability distribution of some responses of the system (quantities of physical
interest). Our rigorously derived error estimates, for the fully discrete problems, will be described and
used to compare the efficiency of the method with several other techniques. Numerical examples illustrate
the theoretical results and demonstrate the distinctions between the various stochastic identification
objectives.
The general framework of the problem is the following: we seek random parameters, coefficients κ(ω, x)
and/or forcing terms f(ω, x), with x ∈ D ⊂ Rd, ω ∈ Ω, where (Ω,F , P ) a complete probability space, that
minimize the mismatch between stochastic measured and simulated data. Here Ω is the set of outcomes,
F ⊂ 2Ω is the σ-algebra of events and P : F → [0, 1] is a probability measure. There are two main ways
of measuring this spatial-stochastic quantity: the expected value of spatial mismatch (̊see e.g. [8, 7] more
ref’s) and the spatial mismatch of averages of the statistical quantities of interest. More precisely, we
consider the minimization cost functionals of the type

J (u, (κ, f)) (0.1)

over all κ,f and random solutions u : Ω × D → R that satisfy P -almost everywhere in Ω, or in other
words almost surely (a.s.), the following stochastic boundary value problem:

L(κ)(u) = f in D (0.2)

supplemented with appropriate boundary conditions.
We consider the groundwater flow problem in a region D ⊂ Rd, d = 1, 2, 3, where the flux is related to
the hydraulic head gradient by Darcy’s law. We model the uncertainties in the soil by describing the
conductivity coefficient κ as a random field denoted κ(ω, x). Similarly, the stochastic forcing term f(ω, x)
models the uncertainty in the sources and sinks.Therefore the hydraulic head u : Ω×D is also a random
field satisfying the elliptic stochastic partial differential equation (SPDE):{

−∇ · (κ(ω, x)∇u(ω, x)) = f(ω, x) in Ω×D,
u = 0 on Ω× ∂D. (0.3)

The linear elliptic SPDE (0.3) with κ(ω, ·) uniformly bounded and coercive, i.e.

there exists κmin, κmax ∈ (0,+∞) such that P (ω ∈ Ω : κ(ω, x) ∈ [κmin, κmax]∀x ∈ D) = 1 (0.4)

and f(ω, ·) square integrable with respect to P , satisfies assumptions A1 and A2 with W (D) = H1
0 (D).

We shall assume that D is a bounded and open subset of Rd, either with smooth boundary (of class C2 for
instance) or convex. This implies that for every f ∈ L2

P (Ω;L2(D)), problem (0.3) has a unique solution
u ∈ L2

P (Ω;H1
0 (D) ∩ H2(D)). The solution to (0.3) must be understood in a variational sense, i.e., for

given f ∈ L2
P (Ω, L2(D)) we say that u ∈ L2

P (Ω, H1
0 (D)) is a solution of

E

[∫
D

d∑
i=1

κ(·, x)∂xiu(·, x)∂xiz(x)− f(·, x)z(x)dx

]
= 0, ∀z ∈ H1

0 (D). (0.5)

To simplify the presentation, we use operator L to represent the Poisson operator introduce in forward
state equation (0.3). Here we need to introduce all the admissible sets to simplify the notation going
forward. First we define the admissible set of conductivity coefficients given by

Aad = {κ ∈ L∞(Ω;L∞(D)) | κ(ω, x) satisfies (0.4)} , (0.6)



then given κ ∈ Aad let the admissible set of states and controls be defined as

Bad =
{

(u, f) | u ∈ L2
P (Ω;H1

0 (D) ∩H2(D)) and f ∈ L2
P (Ω;L2(D))

}
. (0.7)

Finally, given f ∈ L2
P (Ω;L2(D)) let the the admissible set of states and coefficients be described as

Cad =
{

(u, κ) | u ∈ L2
P (Ω;H1

0 (D) ∩H2(D)) and κ ∈ Aad
}
. (0.8)

We also introduce a stochastic target function u ∈ L2
P (Ω;L2(D)), a given possible perturbed observation.

We consider a general class of minimization problems for solving the stochastic inverse problem for the
random forcing function f(ω, x) and the solution u(ω, x) satisfying a.s. (0.3). Here we assume given the
input random process κ ∈ Aad and the target u ∈ L2

P (Ω;L2(D)) and we want to recover (u∗J , f
∗
J ) such

that

(u∗J , f
∗
J ) = inf

(u,f)∈Bad

{J(u, f) : subject to (0.3)} (0.9)

where J(u, f) is a given stochastic functional constructed to track the desired random fields or the sta-
tistical quantities of interest (QoI) of such stochastic functions. This leads to the following definition. A
pair (u∗J , f

∗
J ) ∈ Bad satisfying (0.3) a.s., for which the infimum in (0.9) is attained are called the stochastic

optimal pair and the control f̃ is referred as stochastic optimal control. In what follows we will describe
two functionals, denoted J1(u, f) and J2(u, f) used to solve stochastic optimal control problems. The
first, described by (0.10), is based on the standard classical approach based on stochastic least squares
approximation whereas the second, described by (0.14), uses statistical tracking objectives and is easily
generalized. We will also describe the corresponding adjoint equations, optimality conditions and state
the necessary conditions for existence and uniqueness of the stochastic optimal pair.
The optimal control problem using stochastic least squares minimization
For κ ∈ Aad given data, we consider the following optimal control problem associated with a stochastic
elliptic boundary value problem:

(P.1)



Minimize the cost functional

J1(u, f) = E
[

1
2
‖u(ω, ·)− u(ω, ·)‖2L2(D) +

α

2
‖f(ω, ·)‖2L2(D)

]
,

on all (u, f) ∈ Bad subject to the stochastic state equations (0.3).

(0.10)

Using standard techniques (see e.g. [13, 14, 1, 2, 15, 10, 9, 7]) one can prove that the problem (0.10)-(0.3)
has a unique optimal pair that is characterized by a maximum principle type result.
(û, f̂) is the unique optimal pair in problem (0.10)-(0.3) if and only if there exists ξ ∈ L2

P (Ω;H1
0 (D)) such

that

−∇ · (κ(ω, x)∇ξ(ω, x)) = û(ω, x)− u(ω, x) a.e. in Ω×D,
ξ(ω, x) = 0 a.e. in Ω× ∂D. (0.11)

and

f̂(ω, x) = − 1
α
ξ(ω, x) a.e. in Ω×D. (0.12)

Therefore the solution of the control problem is the solution of the optimality system:

(the state equations) −∇ · (κ∇û) = f̂ in Ω×D, and u = 0 in Ω× ∂D;
(the adjoint equations) −∇ · (κ∇ξ) = û− u in Ω×D, and ξ = 0 in Ω× ∂D.
(and the optimality condition) f̂ = − 1

αξ a.e. in Ω×D.
(0.13)



The necessary and sufficient conditions (0.13) are a system of coupled stochastic partial differential equa-
tions whose solution yields the optimal control f̂ , the optimal state û and the optimal adjoint state
ξ.
The optimal control problem utilizing statistical tracking objectives
Now we aim at matching expected values, i.e., we consider the following problem:

(P.2)



Minimize the cost functional

J2(u, f) =
1
2

∫
D

[
Eu(·, x)− Eu(·, x)

]2
dx+

α

2

∫
D

Ef2(·, x)dx,

on all (u, f) ∈ Bad subject to the stochastic state equations (0.3).

(0.14)

Note that ∫
D

[
Eu(·, x)− Eu(·, x)

]2
dx ≤ E

(
‖u− u‖2L2(D)

)
,

which justifies the functional (0.14).
(ũ, f̃) is the optimal pair in problem (0.10),(0.3) if and only if there exists ξ ∈ L2

P (Ω;H1
0 (D)) such that

−∇ · (κ(ω, x)∇ξ(ω, x)) = E
(
ũ(·, x)− u(·, x)

)
in Ω×D,

ξ(ω, x) = 0 in Ω× ∂D. (0.15)

and

f̃(ω, x) = − 1
α
ξ(ω, x) a.e. in Ω×D. (0.16)

Therefore the solutions of the control problem are the solutions of the optimality system:

(the state equations) −∇ · (κ∇ũ) = f̃ in Ω×D, and u = 0 in Ω× ∂D,
(the adjoint equations) −∇ · (κ∇ξ) = E(ũ− u) in Ω×D, and ξ = 0 in Ω× ∂D,
(and the optimality condition) f̃ = − 1

αξ a.e. in Ω×D.
(0.17)

The conditions (0.17) resemble the optimality system (0.13), the difference is only in the adjoint equation
which has a deterministic right-hand side. Nevertheless, the adjoint variable is still a stochastic quantity,
the adjoint operator having stochastic coefficients.
Stochastic parameter identification problems
We also study the identification of the coefficient κ in the stochastic boundary value problem (0.3). In
the deterministic case, the direct problem, where κ is given, the existence and uniqueness results are well
known, see e.g. [11]. The linear deterministic inverse problem related to (0.3) has been studied in e.g.
[1], for the nonlinear deterministic see e.g. [3].
For the identification problem, we are given a possible perturbed observation u corresponding to the state
variable u and we must determine κ in (0.3) such that u(κ) = u in Ω×D. Of course, such an κ may not
exist.
Parameter identification using stochastic least squares minimization



The least squares approach leads us to the minimization problem:

(P.3)



Minimize the cost functional

J3(u, κ) = E
[

1
2
‖u− u‖2L2(D) +

β

2
‖κ‖2L2(D)

]
,

on all (u, κ) ∈ Cad subject to the stochastic state equations (0.3).

(0.18)

Let (u∗, κ∗) be an optimal pair in problem (0.3) and (0.18). Then

κ∗(ω, x) = max{κmin,min{ 1
β
∇u∗(ω, x)∇η(ω, x), κmax}} a.e. in Ω×D (0.19)

where η ∈ L2
P (Ω;H1

0 (D)) is the solution of

−∇ · (κ∗(ω, x)∇η(ω, x)) = u∗(ω, x)− u(ω, x) in Ω×D,
η(ω, x) = 0 in Ω× ∂D. (0.20)

Parameter identification utilizing statistical tracking objectives
For the identification problem matching expected values, given a possible perturbed observation u corre-
sponding to the state variable u, we seek κ in (0.3) such that Eu(κ) = Eu in D. Therefore we consider
the problem:

(P.4)



Minimize the cost functional

J4(u, κ) =
1
2

∫
D

[
Eu(·, x)− Eu(·, x)

]2
dx+

β

2

∫
D

Eκ2(·, x)dx,

on all (u, κ) ∈ Cad subject to the stochastic state equations (0.3).

(0.21)

Let (̊u, κ̊) be an optimal pair in problem (0.3) and (0.21). Then

κ̊(ω, x) = max{κmin,min{ 1
β
∇ů(ω, x)∇η(ω, x), κmax}} a.e. in Ω×D (0.22)

where η ∈ L2
P (Ω;H1

0 (D)) is the solution of

−∇ · (̊κ(ω, x)∇η(ω, x)) = E
(
ů(·, x)− u(·, x)

)
in Ω×D,

η(ω, x) = 0 in Ω× ∂D. (0.23)

Identification of higher order moments
If one is interested in matching covariance, and/or higher order moments, the cost functional used in
problem (0.21) can be generalized as follows. Assume we are interested in L-order moments, and f ∈
LLP (Ω;L2L−2(D)) then

(P.5)



Minimize the cost functional

J5(u, κ) =
L∑
`=1

1
2`

∫
D

[
Eu`(·, x)− Eu`(·, x)

]2
dx+

β

2

∫
D

Eκ2(·, x)dx,

on all (u, κ) ∈ Cad subject to the stochastic state equations (0.3).

(0.24)



Let (̊u, κ̊) be an optimal pair in problem (0.3) and (0.24). Then

κ̊(ω, x) = max{κmin,min{ 1
β
∇ů(ω, x)∇η(ω, x), κmax}} a.e. in Ω×D (0.25)

where η ∈ LLP (Ω;H1
0 (D) ∩ L2L(D)) is the solution of

−∇ · (̊κ(ω, x)∇η(ω, x)) =
L∑
`=1

ů`−1E
(
ů`(·, x)− u`(·, x)

)
in Ω×D,

η(ω, x) = 0 in Ω× ∂D.
(0.26)

We illustrate the convergence of the generalized stochastic collocation (gSC), for identifying the random
process κ(ω, x) coming from the solution of the stochastic linear elliptic problem described in 0.3, in one
spatial dimension. We will exemplify the algorithm using both the expected value of spatial mismatch
and the spatial mismatch of averages of the statistical quantities of interest. The rates of convergence are
derived from estimates of the forward problem and the computational results are in accordance with the
convergence rates predicted by the theory. However, for matching the expected value of the parameter
and the state, we observe faster convergence when employing the statistical tracking objective than the
standard stochastic least squares minimization, which suggests the inclusion of higher order moments to
the tracking functionals may result in even better statistical description of random fields.
Finally, we will also use this problem to compare the convergence of the gSC approach with Monte Carlo
methods for solving the stochastic optimality system resulting from the stochastic parameter identification
approach, see Table 0.1. Given a stochastic target u(ω, x) and random process f(ω, x) the problem is to
identify the optimal coefficient κ∗J(ω, x) and state u∗J(ω, x) satisfying

J(u∗J , κ
∗
J) = inf

(u,κ)∈Cad

J(u, κ), (0.27)

subject to { −∇ · (κ(ω, ·)∇u(ω, ·)) = f(ω, ·) in Ω×D,
u(ω, ·) = 0 on Ω× ∂D, (0.28)

with D = [0, 1]. For this example we will consider both identification problems by letting J = J3 and
J = J4 described by equations (0.18) and (0.21). For both optimization problems we assume we are given
the exact stochastic target, described as

u(ω, x) = x(1− x2) +
N∑
n=1

sin
(
nπx

Lu

)
Yn(ω), (0.29)

and we want the desired optimal (true) random coefficient κ to be given by

κ(ω, x) = (1 + x3) +
N∑
n=1

cos
(
nπx

Lκ

)
Yn(ω). (0.30)

The goal of computation will be to find the optimal (κ∗J3
, u∗J3

) and (κ∗J4
, u∗J4

) that satisfy (0.27) - (0.28)
with a given fixed stochastic load defined as the exact right-hand, i.e.,

f(ω, x) = −∇ · (κ(ω, x)∇u(ω, x)). (0.31)

For x ∈ D we let Lu = 2N and Lκ = 1/2 and we note that both random expressions for u and κ are related
to a truncated Karhunen-Loève expansion of a one-dimensional stationary covariance. However, this is
just a test problem where we have guaranteed well-posedness through the construction of an uniformly



bounded and coercive κ(ω, x) and enforced isotropy when assembling the random target u, the stochastic
process κ(ω, x) to be identified and forcing function f(ω, x) with respect to the random domain ΓN . In
this example, all the random variables {Yn(ω)}Nn=1 are independent, have zero mean and unit variance,
i.e. E[Yn] = 0 and E[YnYm] = δnm for n,m ∈ N+, and are uniformly distributed in the interval [0, 1].
We combine the gSC approximations with an gradient-based optimization method, for solving (0.27) -
(0.28). First, we plot several ensembles, sampled from the Clenshaw-Curtis sparse grid H (3, 5), of the
target u(Y(ωk), x), the the exact input parameter κ(Y(ωk), x) and the right-hand side f(Y(ωk), x), for
k = 1, . . . ,M = 241, and the corresponding expected values E [u] (x), E [κ] (x) and E [f ] (x) in Figures
0.1(a), 0.1(b) and 0.1(c) respectively. The finite element space for the spatial discretization is the span of
continuous functions that are piecewise polynomials with degree two over a uniform partition of D with
1225 unknowns.
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Fig. 0.1: For a finite dimensional probability space ΓN , with N = 5 we plot k = 1, . . . ,M = 241 realizations (blue), correspond-
ing to Clenshaw-Curtis samples from the isotropic sparse grid H (3, 5), and the exact expectation (red) of: (1) the stochastic
target u(ω, x), (2) the true input parameter κ(ω, x) and (3) the forcing function f(ω, x).

Instead of solving the optimality systems, a gradient algorithm is used to design the optimal stochastic
coefficient κ∗J3

(ω, x) and κ∗J4
(ω, x) respectively. The first step involves computing the gradient of the cost



functionals d
dκJ3(u, κ) and d

dκJ4(u, κ). In this example the gradient of the cost functionals are evaluated
and used in simple minimization framework to estimate the optimal input parameter κ(ω, x). Given the
stochastic load f and the target u, this procedure is described below.

1. Define the number of desired sparse grid collocation points M in ΓN with the corresponding inter-
polating basis functions {ψk(y)}Mk=1 of Pp(ΓN ).

2. Set the gradient iteration count i = 0 and select an initial guess for the input coefficient κ(0)(y, x).
Set the initial step size ε < 1 used by the gradient algorithm.

3. Solve the forward problem given by (0.28) using κ(i) and construct the corresponding random solution
u|κ(i) .

4. Compute the cost functionals J (i)
n , where n = 3, 4 when solving problems (P.3) or (P.4) respectively.

5. Compute the gradient of the cost functionals d
dκJ

(i)
n where n = 3, 4.

6. Compute an updated random coefficient κ(i+1) = κ(i) − ε ddκJ (i)
n , check the convergence criteria and

update the gradient step (if necessary):
For our particular problem described by (0.27) - (0.28) we define the penalty term β = 10−6 for both
functionals J3 and J4 described by (0.18) and (0.21) respectively. The remaining parameters required by
the gradient algorithm are defined as: the initial step size ε = 10−3, the convergence tolerance tol = β
and the maximum number of gradient iterations itermax = 103.
The first exhibition of the improvements offered by utilizing out proposed functional J4 as opposed to J3

for constructing the optimal pair (u∗, κ∗) can be observed in Figure 0.2.
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Fig. 0.2: A N = 11 dimensional comparison of the convergence of cost functionals J3 and J4, given by (0.18) and (0.21)
respectively, when using the gradient-based sparse grid stochastic collocation method for solving the optimization problem
(0.27) - (0.28) with β = 10−6.

2. Improved accuracy in regularization models of incompressible flow via adaptive nonlinear
filtering [4]
We study adaptive nonlinear filtering in the Leray regularization model for incompressible, viscous Newto-
nian flow. The filtering radius is locally adjusted so that resolved flow regions and coherent flow structures
are not ‘filtered-out’, which is a common problem with these types of models. A numerical method is
proposed that is unconditionally stable with respect to timestep, and decouples the problem so that the
filtering becomes linear at each timestep and is decoupled from the system. Several numerical examples
are given that demonstrate the effectiveness of the method.
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Fig. 0.3: A N = 1 dimensional comparison of the gradient-based sparse grid stochastic collocation method, with M = 5
collocation points, for solving the optimization problem (0.27) - (0.28) with functionals J = J3 (dashed black) and J = J4

(solid black). We plot: 0.3(a) the exact first moment of the target E[u] (red) versus the expected value of the optimal solution
E[u∗J3

] (dashed black) and E[u∗J4
] (solid black); 0.3(b) the exact first moment of the coefficient E[κ] (red) versus the expected

value of the optimal coefficients E[κ∗J3
] (dashed black) and E[κ∗J4

] (solid black).
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Fig. 0.4: A N = 5 dimensional comparison of a gradient-based sparse grid stochastic collocation method, with M = 61
collocation points , for solving the optimization problem (0.27) - (0.28) with functionals J = J3 (dashed black) and J = J4

(solid black). We plot: 0.5(a) the exact first moment of the target E[u] (red) versus the expected value of the optimal solutions
E[u∗J3

] (dashed black) and E[u∗J4
] (solid black); 0.5(b) the exact first moment of the coefficient E[κ] (red) versus the expected

value of the optimal coefficients E[κ∗J3
] (dashed black) and E[κ∗J4

] (solid black).

3. Analysis of stability and errors of IMEX methods for magnetohydrodynamics flows at small
Reynolds number [12]
The MHD flows are governed by the Navier-Stokes equations coupled with the Maxwell equations through
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Fig. 0.5: A N = 11 dimensional comparison of a gradient-based sparse grid stochastic collocation (SC) method, using M = 265

collocation points with a gradient-based Monte Carlo (MC) method using 1.2 × 106 samples, for solving the optimization
problem (0.27) - (0.28). We plot: 0.5(a) the exact first moment of the target E[u] (red) versus the expected value of the optimal
solution E[u∗J3

] using SC (dashed black), E[u∗J4
] using SC (solid black) as well as E[u∗J4

] using MC (dotted blue); 0.5(b) the

exact first moment of the coefficient E[κ] (red) versus the expected value of the optimal coefficient E[κ∗J3
] using SC (dashed

black), E[κ∗J4
] using SC (solid black) as well as E[κ∗J4

] using MC (dotted blue).

N SG MC
5 61 7e+03
11 1581 9e+06
21 13329 8e+09

Table 0.1: For ΓN , with N = 5, 11 and 21, we compare the number of deterministic solutions required by the sparse grid method
(SG) using Clenshaw-Curtis abscissas and the Monte Carlo (MC) method using random abscissas, to reduce the original error

in both
‚‚‚E[u∗J4

] − E[u]
‚‚‚

L2(D)
and

‚‚‚E[κ∗J4
] − E[κ]

‚‚‚
L2(D)

by a factor of 104.

coupling terms. The physical processes of fluid flows and electricity and magnetism are quite different
and non-model problems can require different meshes, time steps and methods. We introduce a implicit-
explicit (IMEX) method where the MHD equations can be evolved in time by calls to the NSE and
Maxwell codes, each possibly optimized for the subproblem’s respective physics.
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